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Abstract

Recursive perturbation solutions are provided for the
steady flow problem and the eulerian transport prob-
lem for chemicals undergoing deterministic, nonequi-
librium, frst-order reactions. The mean fux of the
solvent is obtained up to O(o}) where o7 is the vari-
ance in Huctuating conductivity. The stochastic con-
centration is found fo arbitrary order in &,, where
o is the variance in fluctuation solvent velocity. The
stochastic concentration is obtained as a perturbation
to the deterministic concentration associated with
the constant mean velocity. The solutions do not suf-
fer from the carumon closure problems encountered
with earlier eulerian methods.

1 Introduction

Over the last several decades stochastic aproaches
have been extensively applied to study solute evo-
lution in random porous media {Dagan, 1689; Gel-
har, 1993; Cushman, 1997}. Studies have suggested
that natural heterogeneity plays a large role in mixing
processes in the subsurface. Much of this heterogene-
ity is manifest in the spatial variability of hydraulic
conductivity which induces fluctuating velocities that
enhance spreading and contribute to the uncertainty
in solute transport. Recently, Deng and Cushman
(1995) have provided a second order in o3 (o3 be-
ing the variance in fuctuating conductivity) solution
to the steady How problem. We summarize that re-

sult here and then go on to summarize a k%-order
in o, (o3 being the variance in fuctuating velocity)
solution to the eulerian transport problem for conser-
vative trancers which was obtained in Cushman and
Hu (1997). Finally we extend this latter result to
accoumt for linear, nonequilibrium, deterministically-
veacting chemicals,

2 Second-Order Flow Sclution
(Deng and Cushman, 1995)

In an unbounded locally isotropic medium under
steady How conditions, the head, &, is assumed to

satisty 5 56
5}; (KG—%> = 0 (1)

where #(x) is the hydrauvlic conductivity. If we define
V=K, assume £2 = —J;+ 2 where J = (J,0,0)
is the mean head gradient, then with ¥ =¥ + f(x),
where Y is constant, (1) takes the form

9%h af dh af
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The Darcy velocity can be decompesed as
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where V; = V; + v;. To second order in orf, we have  and assuming f is a stationary Gaussian process gives

_ B =R , Ozt 12
V= %—Q[Jéﬂ (Héaﬁ +—é—0?) ) w2 () + Bxnalw), Olog) 1z

where u =x -~ y and
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1/ ,,0h ] ’
—_— F— 7 .
8 (f dr; -7 Bzy ) M Alk) = &7, (17)
Here 'ugl) and ng) are, respectively, the linear com- A(x) = 6:::1 {(18)

ponent of the Buctuating velocity and its nonlin-
ear correction. Using this latter decomposition the Here k is dual under F7T to x.

fluctuating-velocity covariance, £;;, takes the form Using (6) and (7) we find
Ey(x,y) = Ry + R} RV x,y) = B (x — y)
+RrG™ + R (8) = RED(w) + Ry (w), (19)
where where
R(k ) boy) = (k (Z) ). ©) (1,1 __ K J?
Using (2} one can relate the covariance for the fluctu- Ris‘:l - {511 S kgy

ating head, Rpp, to the fluctuating log-conductivity +A; *u (6,15 + 84 Pj)

covariance, Fyy. Setting
+Ap gy Ay #g P-ij}; (20}
Run(x,y) = z Bph,m(%,¥) (10)
m=2 a1y th}z
Rzg a = nZ A,ﬁ g Aj kg -

with

th,m(xv Y} = }—?:(X)h_? (y)a m == i +j (11) ) [(Al Fu Pﬂm)2
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where
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i n2

1
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i P+ AL %4 Pin] *u

-{Aj(Ai sa Pm) = Ay % (4; - Pm)}

+A; #y [{A} *u ‘ij){Al Fay Pm)

+(A1 *u Al *u ij)PmJ }, (25)
and 2,1 1,2) (1,2
Rl('j, )(u) =R§'1.1 { )+R312)( ) (26)

It can be shown that Rgll ) is accurate to O(a%}

whersas R{l 1) R(l 1

e and RE;’U are accurate to
O(o3).

{21) Finally set
1y _ (1) (1) (1.1}
i Ry
with hh ~ O(af), (27)
Cf = el =l anly)
with hh ~ O(rff +of), (28)
(22) 053} =a (1}(1) 2))( {1 + 'U{z))
=C +a [RE 24 REY 4 B 2)}
(23) and
Clij} =q ('vgl) + 'um)( (2 5 U(E))
1,2 2,
Ol o [Agp s H3P )
with hh ~ O(c} + o) (30)

where o = o1 K J* [n?.

Figures 1-3 illustrate the effects of these various
approximations for & Gaussian log-fluctuating con-
ductivity with e = A, /Ay being the ratio of vertical
£0 horizontal integral scales.

(24)
Solutions to the Stochastic
Transport Problem for Con-
servative Traces Which Are
O(oy)

We follows Cushman and Hu (1997). For simplic-
ity, suppose we have an infinite domalin and sieady

3

1181



Figure 1: Cy; as a function of p and u™ = uy/An and
various o2, a) o3 = 0.1, b) 0} = 0.5, ¢) o} = 1.0.
From Deng and Cushman (1997), Fig. 1

divergence free flow with the concentration satisfying

ac aC o2C
ot Vgm0

where V; is assumed constant and of order unity.
Here C is the stochastic concentration, V; = V; + v,
and d; is the assumed deterministic-constant local
dispersivity. Let C? be the solution to the sure prob-

lem

(31)

9co _ ac® | 8:C"
o Vi "l =0

subject to C¢ = Cy(z) where Cp is the deterministic
initial concentration for the stochastic problem given
in (31). We write the solution to (31} as a sum of
perturbations to (32). Let

HC = ~d (32)

c=30 (33)
=9

with _ ‘

7~ Ofa]) {34)
where o2 i3 the variance in the fluctuating velocity
with

% g (35)
Vi

From Deng and

Figure 2: Same as Fig. 1 except Co.
Cushman (1997}, Fig. 2

Let G be the fundamenial solution for the operator
H. For the problem here

3 —
_ _ (zk - th)2 ]
Gz, t) = gexp[[ S ]
(dmdyt) "%, (36)
We have
OOz, 1) = f Gz — g, Colw)dy.  (37)
RS

By inserting (33) into (31) and equating like-powers

in ¢, we obtain the following recursive sequence (V >

0)

aCh -1
Oz

Tt follows that the stochastic concentration to O(ol)

is given by

HCVN = —u;(x) (1 dwno)- (38)

Cix,t) = | Glx =y, 1)Coy)ay

e [

kel

-{G(x-—xzt—t’)
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Figure 3: Same as Fig. 1 except C33. From Deng and
Cushman (1997), Fig. 3

[H 5(.3 (xt _xf“,t'z—t”l)J .
=1 amj!

8G

ok O XL LH”“(X }

-C'g(xk+1)}dxl LLdxMHL gt (30)
From (39) the mean concentration to G{cl) is

T(e,1) = / Gix - v, 1)Co(y)dy

tkl

+Z{ 1 / / /}{3('ﬂ+1]

v{G(x_x’,t—t’)-
[ - 96

8 (et — xtH g tf-f—l)] .
.’E

%
oG
Ak (X k—Hrtk) ije(xf)
Jk =1
-C’g(xk+1)}dxl CodxRtial L de (40}
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4 The Case of Linear Nonequi-
librium Deterministic Reac-
tions

In this case we assume the basic underlying equations
are

8C B8 - aC Aﬁzc’ R
e + B -+ vzé"—z: - dz_b:r_f 0, (41)
aaf K AK O~ 85y =0, (42)

where again we assume an infinite domain. Here, K,
is the reaction rate, K is the partition coefficient,
and 5 is the sorbed phase concentration. As in the
previous section we expand ' in an infinite series of
terms of order ¢, and write a recursive system of
equations

N1
PCOY = —y;(z) 8¢ {1~ dno) (43)
ail’:j
where P is defined by
PC = oc¢ + K K C
ot
:
~K,. Ky jf e~ fAt-T (g rydr
o
— 90 8C
+Vi6—a:£ - diwgg. (44)
The Green’s function for P is given by
= Ky e -1
G= [w + Kf + Vjik; + djkf.J (45)
where = indicates Fourier-Laplace transform with w

dual to ¢ and k dual to x. Thus € and C take the
form of (39) and {40) where G is given by (45).

5 Discussion
We have provided a closed form perturbation solution

to the steady How problem. The solution is acen-
rate to O(c}) where o7 is the variance in fluctuating



log-hydraulic conductivity. Numerical computations
show second order corrections are important for com-
puting transverse moments.

We have also provided closed form perturbation
solutions to the transport problems for conservative
chemicals and chemicals experiencing nonequilibrium
first-order reversible, deterministic reactions. These
solutions are of arbitrary high accuracy in o, where
o2 is the variance in fluctuating velocity. These so-
lutions do not suffer from problems associated with
truncation in more classical eulerian approaches.
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